Mining explainable temporal specifications from data
from syntax to semantics and back

Luca Bortolussi
University of Trieste, Italy

FBK, Digital Industry Center Seminar f f"é
Trento, December 19, 2022 "%l s/

Context and Problem

Time series of #43790 points at 360s resolution: — portata data_loss sensor_anomaly_idx

30

Jan 2022 Feb 2022 Mar 2022 Aﬁr 2022 May 2022 Jun 2022
Time series of #43790 points at 360s resolution: — pressione data_loss sensor_anomaly_idx
2
0
2
-4

Jan 2022 . eb 2022 Mar 2022 Apr 2022 May 2022 Jun 2022
courtesy of idrostudi s.r.l.

flow rate and pressure in a water network

Internet-of-things)

predictive modelling)

(
(time-series)
Q

e.g. anomaly detection)

Need of human-interpretable models

Menu of the Day

Starter: STL requirement mining

Main: semantic-preserving STL embeddings

Dessert: ongoing work salad

Alka seltzer?

Signal Temporal Logic (STL)

STL is a linear-time temporal logic suitable to specify property over continuous trajectories.

Extinction of an epidemics between 100 and 120 days

Syntax: @ = tt|f($) Z O|_'S0|<Pl A 25 ‘901 U[a,b] P2 from onset: Xinf >0 U[100,120] Xinf =0

500

25
C=[X-X;>0
H:=[X1-X2>0] i =[X; =X, >0]

frequency

%

-10 0 10 20
robustness degree

Boolean semantics: y (r) Quantitative semantics: p (r)

Satisfaction probability: E | x(r)] Expected robustness: [Eﬂ(r)[p(r)]

STL requirement mining

STL classifiers

Labelled Data @ @

t ﬁ’ ¢ = F[o:«] x>1 AFjg 4)(x < 1)
_h’, L t %b STL classifiers from positive examples
t

{:}O 7
Unlabelled Data ‘ {C)%‘ Q{:go ‘

Mt' M*t JC.‘: % “%
h, M Logical Clusters (STL-based)

t P1 P2

t

Source: https://jdeshmukh.github.io/research.html

STL classifier: ROGE

Learn an STL-classifier separating good from bad trajectories

Require: D,,D,, K, Ne, Ng,a, s
. gen < GENERATEINITIALFORMULAE(Ne, s)
. geng < LEARNINGPARAMETERS(gen, G, K)
: fori=1...Ng do
subge < SAMPLE(geng, F)

Hybrid Genetic Algorithm:)
2
3
4
5. newg < EVOLVE(subge,)
6
7
8
9

- GAto explore STL syntactic tree space
- Bayesian Optimization for optimising formula parameters

newgeg < LEARNINGPARAMETERS(newg, G,K)
geng < SAMPLE(newgg U geng, F)

. end for

. return geng

E(Rqﬁp?p) - IE(R¢|)?”)

G(op) = - — .
2 o (Ry|Xp) + a(Ry| Xn)

L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi: A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018

ROGE: results

Maritime surveillance

45
Regular
|——Anomalus |
40 ——Anomalus I _ _
35) » Vigs —
o 30 L
25
20 -
15 - L 1
0 10 20 30 40 50 60 70

((X2 > 22.46)]/{[49,287] (Xl < 3165))

Train cruise

vel
8

regular
anomalous

0 20 20 &0 80 100
sample

(F[22’4o] (vel > 2448)) A\ (F[46’49](19.00 <vel < 2644))

Mining requirements from positive examples

Optimization Algorithm:

- GAto explore STL syntactic tree space

- Score function modelling the tightness of
STL properties (positive robustness close to zero)

PICES]

-
xeXL

Tightness Metric

{‘:;j
—
()
Q
=
2.
-
(@]
0]
—
—
—
=
Q
=%
(@]
=
c
oD
w

1 1
floiXy) =a— [(x e Xg i x o} + ———
X’ /

+
‘ ~’3| Tp.x; Xz

Ip(0. 91 = 5 > |p(<p,x)|)

xeX

o;,x=J§Z

xeX

S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, N. Shankar. TeLEx: learning signal temporal logic from positive examples using tightness metric, Formal Methods in System Design
F. Pigozzi, E. Medvet, L. Nenzi. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Programming, Applied Sciences, 2022

A modern machine learning approach

representation learning

(input data) |:> (representation in R”) |:> (prediction task)

non-linear typically linear

Goal: embed STL formulae in R" meaningfully.

Ideally: distance between embedded formulae should reflect semantic distance.

Main: semantic-preserving embeddings

How to construct meaningful embeddings?

kernel-based methods

How to check that they are meaningful?

learning model checking

Bortolussi, L., Gallo, G. M., Kretinsky, J., & Nenzi, L. Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: TACAS, 2022.

Kernels

A kernelis a function k defining implicitly a
scalar product in a feature space

k(z,y) =< ¢(z),#(2) > Vz,2 € X

where ¢ is a map from X to the feature space

Kernel’s application to linearize a problem

Kernel Trick
A linear regression problem in the feature space ¢(X): 2 Wi, (x)

J
has a dual formulation depending on N dual variables a and on the kernel evaluated

among training points k(x;, X;).

Overview: kernel trick for STL

1. How to embed formulae in a Hilbert space?
identify a formula with a functional via quantitative semantics: ¢ : — R

2. How to measure similarity on the feature representation?
use scalar product in L, w.r.t. a base finite measure y,

3. How to design a finite measure on trajectories?
prefer simple trajectories with limited variation

A kernel for STL

Computing kernels in three steps:

integration w.r.t. a base measure [, k,(gp’ tﬁ) — f Qp(r){ﬁ(l’)d,uo(l’)
rev”

k' (¢, 4)
VK (0, @)K (v, ¥)

normalisation ko(p,¥) =

1 —2ko (¢,
exponentiation k() = exp (_ 02(90 lﬁ))

o

The base measure K,

M
Compute integral by Montecarlo sampling of py: k'(¢,) = 1M Z o(ri)w(n)
i=1

Uy is defined via its sampling algorithm:

- fixed time step A up to a final time T

- Bounded total variation (sampled from squared
Gaussian)

- Limited change of sign of derivative

“Learning” model checking

Equipped with the previous definitions, we can try to solve the following problem:

Given p(y;| M) for randomly chosen formulae v, ..., ¥,

can we predict p(¢@ | M)?

without knowing or executing the system M

Learning with STL kernels

Different kinds of prediction tasks:

- Boolean truth and robustness for individual trajectories

- average robustness (w.r.t. [, or a generic process p)

- satisfaction probability (w.r.t. 4, or a generic process p)

Data distribution over STL formulae ¢: prefer simple formulae over complex ones

Training set: { (W, y)}i=1.

Learning algorithm: kernel ridge regression (with cross-validation)

Experimental Results

w 0 (left) Robustness on single
- —2] trajectories and (right)
S satisfaction probability (1)
_4-
2 i

Good generalisation on out-
of-distribution formulae

predicted p
o

-3 -2 -1 0 1 2 3 0.0 0.2 0.4 0.6 0.8 1.0
standard robustness satisfaction probability

Experimental Results on the stochastic models

- 100 === standard mmm standard
c —— median s 100 A —— median s
g 501 norrr?alized normalized
o —— mediann 50 —— mediann
0 %s 0.90 0.95 100 % 10 -os 00 05 10 (left) Accuracy of satisfiability
n = prediction and (right) MRE of
100/ 150 robustness prediction
= 100-
=
8 50 50 -
0 , , : 0- et
0.85 0.90 0.95 1.00 1.0 Immigration (1d)
n= Isomerization (2d)
150 L
100 Transcription (3d)
- 1001
3
50]
o 50
0- 0- |
0.85 0.90 0.95 1.00 -1.0 =05 0.0 0.5 1.0

accuracy log MRE

How many input points we need?

" —0.5- _
= _10- In practice
S -1.5

PAC bounds for 0-1 loss: 0 200 400_ 690 800 1000
Train Size

N A
< Lp(h —)
L(h) < Lp()+\/ﬁ+3 5

A: maximum norm of regression functions; ¢: error probability; m: dataset size;
1 m

L(h) = Byp-pu |[(1(0) £ ¥(0))|: Lo(h) = — Z I(h(e) # y(e))

=1

Dessert: ongoing work

How to make embeddings explicit (i.e. in R%?
kernel PCA

Can we replace quantitative with Boolean semantics?

Boolean kernel

How to use these embeddings for STL requirement mining?

invert the embeddings using GNN

From implicit to explicit embeddings

(input data) I:> (representation in Rm) |:> (representation in IRk) |:> (prediction task)

STL kernel dimensionality reduction kK << n < o

Goal: reduce the dimensionality of the embeddings using Kernel-PCA

Projection of testing data Projection of testing data

Ke rn e I - PCA) Testing data . usln.g::/:. using KernelPCA
Project input data on a high-dimensional continuous Lot e | My .
o K otg
&

space R" using a kernel, then perform dimensionality |
reduction using PCA to project the embeddings in IR", T o o] Ty
where downstream tasks are performed. I P T S R

Kernel-PCA: experimental results

Normalized Robustness

Standard Robustness

count

count

B Kernel Reg.
KernelPCA(350)

I

” i“os

0.0

| w.ﬂr 0

-0.5 0.0 0.5
Log MRE

MRE Comparison of STL Kernel
Regression with n = 1000 and
Kernel PCA + linear regression with

k = 350.

Normalized Robustness Standard Robustness

0.06 Median Kern. Reg 0.16
Q1 Kemn. Reg

0.05 Q3 Kern. Reg. 0.14
0.12

0.04
0.10
w 0,03 0.08
002 0.06
0.04
0.01 0.02
0.00 0.00

vvvvvvvvvvvvvvvvvv
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000
N. Principal Components

T S S S S S S S S S
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000
N. Principal Components

After ~ 350 principal components, the performance of Kernel PCA stabilises to errors

comparable to that of STL Regression.
Intuition: many of the formulae in the training set bring the same
contribution to the final predictions, without adding a significant
amount of information. Reducing the dimension of the embeddings
saves computational time without hurting the predictive performance.

A STL-kernel leveraging qualitative satisfaction

Adapt the definition of the STL Kernel to rely on the qualitative/Boolean semantics of STL

(@, p) = J @(r)w (r)dug(r)
reg
i.e. integral of the product of the satisfiability value of input formulae w.r.t. measure .

Advantages:

- the Boolean kernel preserves semantic equivalence

- the Boolean kernel outperforms the standard one on the task

of satisfaction probability;

- interpretable measure of similarity between STL formulae
(allowing to sample formulae as diverse as possible).

Satisfaction probability

Inverting the embedding

Problem with kernel embeddings: non-invertibility — encoding-decoding architecture

Learn invertible encodings using Graph Neural Networks (GNN):
- Encode parse tree of the formula into the latent space
- Decode latent vectors to syntactic trees, ideally with the same semantic meaning of the input formula

A simpler setting: boolean formulae

Problems with GNN encoding-decoding architectures:
- Scalability to deeper parse trees
- Learning temporal/threshold parameters of operators

Y%

Current solutions/attempts:
- Boolean logic setting (i.e. non-parametric formulae) Node

- Hierarchical approach: first learn adjacency matrix, then features Clas_?_ificstion
as

(IO [|
Acodk

Decoding

Currently 92 £ 3 % average reconstruction accuracy on Boolean
formulae with 5 variables and parse trees having depth ~ 6

Conclusions

- Using kernels + kernel PCA, we can construct finite dimensional embeddings
which are effective in solving the “learning” model checking problem.

- Leveraging GNN deep learning models we are trying to build syntax based
invertible embeddings.

- ldea: combine syntax and semantic based embeddings to get invertible mappings
from formulae to real vector spaces

- use the framework for STL requirement mining, formula translation, sanitisation
and simplification, game-based synthesis, ...

Acknowledgements and References

Jan Kretinski Laura Nenzi Gaia Saveri Houssam Abbas

Bortolussi, L., Gallo, G. M., Kfetinsky, J., & Nenzi, L. Learning model checking and the kernel trick for signal temporal logic
on stochastic processes. In: TACAS, 2022.

