
Mining explainable temporal specifications from data
from syntax to semantics and back

Luca Bortolussi 
University of Trieste, Italy

FBK, Digital Industry Center Seminar
Trento, December 19, 2022

Context and Problem

Need of human-interpretable modelsflow rate and pressure in a water network

Internet-of-things

time-series

predictive modelling

(e.g. anomaly detection)
courtesy of idrostudi s.r.l.

Menu of the Day

Starter: STL requirement mining

Main: semantic-preserving STL embeddings

Dessert: ongoing work salad

Alka seltzer?

Signal Temporal Logic (STL)

STL is a linear-time temporal logic suitable to specify property over continuous trajectories.

Syntax:

Satisfaction probability: 𝔼μ(r)[χ(r)] Expected robustness: 𝔼μ(r)[ρ(r)]

Boolean semantics: χ (r) Quantitative semantics: ρ(r)

Extinction of an epidemics between 100 and 120 days
from onset: Xinf > 0 U[100,120] Xinf = 0

STL requirement mining

 STL classifiers from positive examples

Source: https://jdeshmukh.github.io/research.html

STL classifier: ROGE

Hybrid Genetic Algorithm:
- GA to explore STL syntactic tree space
- Bayesian Optimization for optimising formula parameters

Learn an STL-classifier separating good from bad trajectories

L. Nenzi, S. Silvetti, E. Bartocci, L. Bortolussi: A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018

ROGE: results

Maritime surveillance Train cruise

Mining requirements from positive examples

Optimization Algorithm:
- GA to explore STL syntactic tree space
- Score function modelling the tightness of  

STL properties (positive robustness close to zero)

Formal Methods in System Design

87 9
alpha

1

2

0

alpha8 97 alpha7 8 9

(a) (b) (c)

 |R

ob
us

tn
es

s|

Id
ea

l M
et

ric

Ti
gh

tn
es

s M
et

ric

Fig. 1 a The absolute value of robustness metric reaches 0 at α = 8. It is close to 0 even at 7.99 even though
the temporal property corresponding to α = 7.99 is violated by the trace. b The ideal metric should be negative
when α < 8 and jump to ∞ when α = 8 and drop down to 0 when α > 8. c A metric which is negative for
α < 8, reaches its maxima between 8 and 8+ ε and then drops to 0

– This optimization problem uses the absolute value of the robustness metric. This metric
is generally not differentiable at ρ(φ(p1, p2, . . . , pk)) = 0.

– Further, if we get an ε-approximate solution for the above optimization problem, it no
longer guarantees that all traces will satisfy the instantiated template φ. This is because
the absolute value can be a small positive number even when the actual value is a small
negative number.

In Fig. 1, we use the example at the beginning of the section to illustrate the problem.
Figure 1b illustrates an ideal metric, because it achieves its maximum at the the boundary of
satisfiability and unsatisfiability. Maximizing this metric would yield tight STL property but
optimizing such a discontinuous function is difficult. Figure 1c illustrates a more practical
incarnation of the ideal metric, which is not discontinuous but still useful to learn ε tight STL
property. Our main contribution is designing such a metric.

4.3 Tightness metric

We begin by first defining a tightness metric for predicates. We would like the metric to
achieve its maximum value at the boundary in order to discover tight STL properties. For a
predicateµ(x) := g(x) ≥ α, recall that the robustnessmetric isρ(µ, τ, t) = g(τ (t))−α = r .
We would like to define a tightness metric θ(µ, τ, t) such that it is similar to Fig. 1c, and
hence we define it to be

1
r + e−βr − e−r

where β ≥ 1 is an adjustable parameter.
This function is plotted in Fig. 2 and it approaches the ideal function in Fig. 1b as β

increases albeit at the cost of numerical stability during optimization. This function is smooth
(its derivative is defined and also continuous), and hence, is amenable to gradient-based
numerical optimization techniques. Finding an ε-tight value of α reduces to maximizing θ

with appropriate choice of β—lower values of ε require higher values of β. Apart from the
predicates, the other difficult cases for defining the tightness metric (θ) happen to be the
temporal operators. The requirement here is that the metric θ should be defined such that
it prefers longer time intervals for globally operator and shorter for eventually operator as
illustrated in Fig. 3.

123

S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, N. Shankar. TeLEx: learning signal temporal logic from positive examples using tightness metric, Formal Methods in System Design
F. Pigozzi, E. Medvet, L. Nenzi. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Programming, Applied Sciences, 2022

Appl. Sci. 2021, 11, 10573 9 of 16

6. Experimental Evaluation
Considering the goals described in Section 4, we aim at answering the following

research questions:
RQ1 Can we mine specifications that describe the input unlabeled trajectories?
RQ2 Are the mined specifications readable and interpretable for a human?
We consider to formula describe the dataset well if it tightly fits the pool of trajectories.

To this end, we verify whether the fitness f of the learned formula is as close as possible to
0.0. We say that a formula is readable and interpretable for a human if it is parsimonious; to
this end, we verify whether the size of a formula (number of nodes of the derivation tree),
|j|, is reasonable. Moreover, we also verify whether a formula is easily understandable by
a human by manually inspecting and reporting it.

To answer the research questions according to these definitions, we ran an experi-
mental campaign on real-world data of road traffic. We performed 10 evolutionary runs
with different random seeds. We used the same parameter values for all the runs and set
npop = 500, ngen = 50, ntour = 5, pxover = 0.8, natts = 100, dmin = 1, and dmax = 12.

We executed the experiments on an HPC cluster with nodes equipped with 2 ⇥ 18 cores
based on 2.30 GHz Intel Xeon E5-2697 v4 (Broadwell) and with 128 GB RAM. Fitness evalu-
ations were parallelized across cores; evolutionary runs were parallelized across nodes. We
implemented the software for the experiments in the Java programming language and made it
publicly available at https://github.com/pigozzif/STLRulesEvolutionaryInferenceNoClass (ac-
cessed on 1 November 2021). The project employs the monitoring tool MoonLight
(https://github.com/MoonLightSuite/MoonLight, accessed on 1 November 2021) [28] and the
evolutionary framework JGEA (https://github.com/ericmedvet/jgea, accessed on 1
November 2021).

6.1. Data
The dataset used in this study [29] consists of the trajectories of all the vehicles crossing

the eastbound I-80 Freeway in Emeryville, California (USA). Measurements date back to 13
April 2005 and were taken on a tract of approximately 1640 ft, comprising six lanes and an
on-ramp. The full dataset is partitioned into three 15 min sequences: 4:00 p.m. to 4:15 p.m.,
5:00 p.m. to 5:15 p.m., and 5:15 pm to 5:30 p.m. Intuitively, they correspond to different
traffic patterns, from the build-up of congestion to the peak period.

The dataset contains a total of 5678 unique vehicles tracked over 19,679 frames. For
each vehicle and each frame, it contains the position of the vehicle (lateral and longitudinal
offsets with respect to a reference position), its velocity, its size (width and length), and a
lane identifier. All these attributes have been extracted by the creators of the dataset by
means of image processing and computer vision techniques: we refer the reader to [29] for
more details. Figure 3 provides a graphical representation of the information contained in
a frame of the dataset.

Figure 3. Sample frame reproducing the traffic of the dataset [29]. Each colored box represents a car.
Dotted lines are lane separators, while solid lines are guardrails. The two segments projecting out
from the first level of the road are the boundaries of the on-ramp. The second level of road is the
continuation of the top one, while the red shaded rectangle is the range for the trajectory endpoints.

Learning STL traffic rules

A modern machine learning approach

input data

typically linear

prediction taskrepresentation in ℝn

non-linear

representation learning

Goal: embed STL formulae in meaningfully. ℝn

Ideally: distance between embedded formulae should reflect semantic distance.

Main: semantic-preserving embeddings

How to construct meaningful embeddings?

How to check that they are meaningful?

kernel-based methods

learning model checking

Bortolussi, L., Gallo, G. M., Křetínský, J., & Nenzi, L. Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: TACAS, 2022.

Kernel’s application to linearize a problem

Kernels

A kernel is a function k defining implicitly a
scalar product in a feature space

where is a map from to the feature spaceϕ X

Kernel Trick
A linear regression problem in the feature space :

has a dual formulation depending on dual variables and on the kernel evaluated
among training points .

ϕ(X)

N α
k(xi, xj)

∑
j

wjϕj(x)

Overview: kernel trick for STL

1. How to embed formulae in a Hilbert space?
identify a formula with a functional via quantitative semantics:

2. How to measure similarity on the feature representation?
use scalar product in w.r.t. a base finite measure

3. How to design a finite measure on trajectories?
prefer simple trajectories with limited variation

φ : 𝒯 → ℝ

L2 μ0

A kernel for STL

Computing kernels in three steps:

integration w.r.t. a base measure

normalisation

exponentiation

μ0

Embedding a formula: a Kernel for STL 7/13

Integration w.r.t. a measure µ0 on trajectories + normalization + exponentiation

k 0(',) =
Z

r2T
'(r) (r)dµ0(r)

k0(',) =
k 0(',)

p
k 0(',')k 0(,)

k(',) = exp

�1 � 2k0(',)

�2

!

The integral is computed by Monte Carlo approximation (ri ⇠ µ0):

k 0(',) ⇡ 1
M

MX

i=1

'(ri) (ri)

I µ0 defined by its sampling algorithm
I Fixed time step �

I Bounded total variation
I Limited change of sign of derivative

Embedding a formula: a Kernel for STL 7/13

Integration w.r.t. a measure µ0 on trajectories + normalization + exponentiation

k 0(',) =
Z

r2T
'(r) (r)dµ0(r)

k0(',) =
k 0(',)

p
k 0(',')k 0(,)

k(',) = exp

�1 � 2k0(',)

�2

!

The integral is computed by Monte Carlo approximation (ri ⇠ µ0):

k 0(',) ⇡ 1
M

MX

i=1

'(ri) (ri)

I µ0 defined by its sampling algorithm
I Fixed time step �

I Bounded total variation
I Limited change of sign of derivative

Embedding a formula: a Kernel for STL 7/13

Integration w.r.t. a measure µ0 on trajectories + normalization + exponentiation

k 0(',) =
Z

r2T
'(r) (r)dµ0(r)

k0(',) =
k 0(',)

p
k 0(',')k 0(,)

k(',) = exp

�1 � 2k0(',)

�2

!

The integral is computed by Monte Carlo approximation (ri ⇠ µ0):

k 0(',) ⇡ 1
M

MX

i=1

'(ri) (ri)

I µ0 defined by its sampling algorithm
I Fixed time step �

I Bounded total variation
I Limited change of sign of derivative

The base measure μ0

Embedding a formula: a Kernel for STL 7/13

Integration w.r.t. a measure µ0 on trajectories + normalization + exponentiation

k 0(',) =
Z

r2T
'(r) (r)dµ0(r)

k0(',) =
k 0(',)

p
k 0(',')k 0(,)

k(',) = exp

�1 � 2k0(',)

�2

!

The integral is computed by Monte Carlo approximation (ri ⇠ µ0):

k 0(',) ⇡ 1
M

MX

i=1

'(ri) (ri)

I µ0 defined by its sampling algorithm
I Fixed time step �

I Bounded total variation
I Limited change of sign of derivative

Compute integral by Montecarlo sampling of :μ0

Embedding a formula: a Kernel for STL 7/13

Integration w.r.t. a measure µ0 on trajectories + normalization + exponentiation

k 0(',) =
Z

r2T
'(r) (r)dµ0(r)

k0(',) =
k 0(',)

p
k 0(',')k 0(,)

k(',) = exp

�1 � 2k0(',)

�2

!

The integral is computed by Monte Carlo approximation (ri ⇠ µ0):

k 0(',) ⇡ 1
M

MX

i=1

'(ri) (ri)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time

�4

�3

�2

�1

0

1

2

3

I µ0 defined by its sampling algorithm
I Fixed time step �

I Bounded total variation
I Limited change of sign of derivative

 is defined via its sampling algorithm:
- fixed time step up to a final time
- Bounded total variation (sampled from squared

Gaussian)
- Limited change of sign of derivative

μ0
Δ T

“Learning” model checking

Equipped with the previous definitions, we can try to solve the following problem:

Given for randomly chosen formulae

can we predict ?

without knowing or executing the system

p(ψj |M) ψ1, …, ψn

p(φ |M)

M

Learning with STL kernels

Different kinds of prediction tasks:
- Boolean truth and robustness for individual trajectories
- average robustness (w.r.t. or a generic process)
- satisfaction probability (w.r.t. or a generic process)

Data distribution over STL formulae : prefer simple formulae over complex ones

Training set:

Learning algorithm: kernel ridge regression (with cross-validation)

μ0 μ
μ0 μ

φ

{(ψj, yj)}j=1…,n

Experimental Results
Experimental results 11/13

Prediction of robustness and satisfaction
on a single trajectory.

Prediction of satisfaction probability
(according to µ0).

Good generalization also on out-of-distribution formulae.

Experimental results 11/13

Prediction of robustness and satisfaction
on a single trajectory.

Prediction of satisfaction probability
(according to µ0).

Good generalization also on out-of-distribution formulae.

(left) Robustness on single
trajectories and (right)
satisfaction probability ()μ0

Good generalisation on out-
of-distribution formulae

Experimental Results on the stochastic models
Experimental results on other stochastic models 12/13

Accuracy of satisfiability prediction log10 of MRE of robustness

Immigration (1 dim), Isomerization (2 dim) and Transcription (3 dim) models.

Experimental results on other stochastic models 12/13

Accuracy of satisfiability prediction log10 of MRE of robustness

Immigration (1 dim), Isomerization (2 dim) and Transcription (3 dim) models.

(left) Accuracy of satisfiability
prediction and (right) MRE of
robustness prediction

Immigration (1d)
Isomerization (2d)
Transcription (3d)

PAC bounds 9/13

PAC bounds for 0-1 loss:

L(h)  L̂D(h) +
⇤p
m

+ 3

s
log 2

�

2m
.

⇤: maximum norm of regression functions; �: error probability; m: dataset size;

L(h) = E'⇠pdata

h
I
⇣
h(') , y(')

⌘i
; L̂D(h) =

1
m

mX

i=1

I
⇣
h('i) , y('i)

⌘

How many training points do we need in practice?

How many input points we need?

PAC bounds 9/13

PAC bounds for 0-1 loss:

L(h)  L̂D(h) +
⇤p
m

+ 3

s
log 2

�

2m
.

⇤: maximum norm of regression functions; �: error probability; m: dataset size;

L(h) = E'⇠pdata

h
I
⇣
h(') , y(')

⌘i
; L̂D(h) =

1
m

mX

i=1

I
⇣
h('i) , y('i)

⌘

How many training points do we need in practice?

In practice

Dessert: ongoing work

How to make embeddings explicit (i.e. in)?ℝk

Can we replace quantitative with Boolean semantics?

How to use these embeddings for STL requirement mining?

kernel PCA

Boolean kernel

invert the embeddings using GNN

From implicit to explicit embeddings

input data prediction taskrepresentation in ℝk

dimensionality reduction k << n < ∞

Goal: reduce the dimensionality of the embeddings using Kernel-PCA

representation in ℝ∞

STL kernel

Kernel-PCA
Project input data on a high-dimensional continuous
space using a kernel, then perform dimensionality
reduction using PCA to project the embeddings in ,
where downstream tasks are performed.

ℝn

ℝk

Kernel-PCA: experimental results

MRE Comparison of STL Kernel
Regression with and
Kernel PCA + linear regression with

.

n = 1000

k = 350

After principal components, the performance of Kernel PCA stabilises to errors
comparable to that of STL Regression.

∼ 350

Intuition: many of the formulae in the training set bring the same
contribution to the final predictions, without adding a significant
amount of information. Reducing the dimension of the embeddings
saves computational time without hurting the predictive performance.

A STL-kernel leveraging qualitative satisfaction

Satisfaction probability

Advantages:
- the Boolean kernel preserves semantic equivalence
- the Boolean kernel outperforms the standard one on the task
of satisfaction probability;
- interpretable measure of similarity between STL formulae

(allowing to sample formulae as diverse as possible).

Adapt the definition of the STL Kernel to rely on the qualitative/Boolean semantics of STL

i.e. integral of the product of the satisfiability value of input formulae w.r.t. measure .

k′￼b(φ, ψ) = ∫r∈𝒯
φ̄(r)ψ̄ (r)dμ0(r)

μ0

Inverting the embedding

Problem with kernel embeddings: non-invertibility encoding-decoding architecture→

Learn invertible encodings using Graph Neural Networks (GNN):
- Encode parse tree of the formula into the latent space
- Decode latent vectors to syntactic trees, ideally with the same semantic meaning of the input formula

∧

∨ ¬

∧

zy

yx
Encoder Decoder

Formula Latent Representation in ℝd

∧

∨ ¬

∧

zy

yx

A simpler setting: boolean formulae

Problems with GNN encoding-decoding architectures:
- Scalability to deeper parse trees
- Learning temporal/threshold parameters of operators

Current solutions/attempts:
- Boolean logic setting (i.e. non-parametric formulae)
- Hierarchical approach: first learn adjacency matrix, then features

∧

∨ ¬

∧

XX

XX

∧

∨ ¬

∧

∧

∨ ¬

∧

zy

yx

Node
Classification

Task

Encoding

Decoding

Currently average reconstruction accuracy on Boolean
formulae with variables and parse trees having depth

92 ± 3 %
5 ∼ 6

Conclusions

- Using kernels + kernel PCA, we can construct finite dimensional embeddings
which are effective in solving the “learning” model checking problem.

- Leveraging GNN deep learning models we are trying to build syntax based
invertible embeddings.

- Idea: combine syntax and semantic based embeddings to get invertible mappings
from formulae to real vector spaces

- use the framework for STL requirement mining, formula translation, sanitisation
and simplification, game-based synthesis, …

Acknowledgements and References

Bortolussi, L., Gallo, G. M., Křetínský, J., & Nenzi, L. Learning model checking and the kernel trick for signal temporal logic
on stochastic processes. In: TACAS, 2022.

Jan Kretinski Laura Nenzi Gaia Saveri Houssam Abbas

